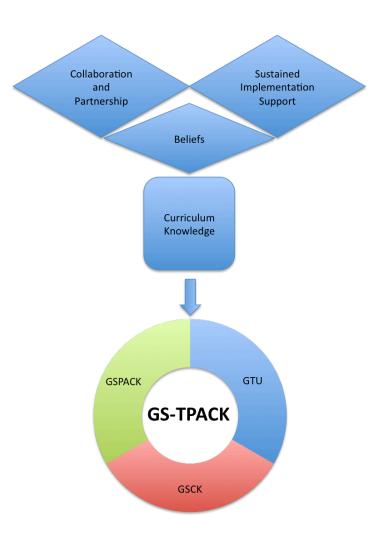
GEOSPATIAL SCIENCE TECHNOLOGICAL PEDAGOGICAL CONTENT KNOWLEDGE PROFESSIONAL DEVELOPMENT MODEL: FIRST YEAR IMPLEMENTATION FINDINGS

Tamara Peffer, Alec Bodzin, Violet Kulo Lehigh University

ASTE 2011 Minneapolis, MN

Support from the Toyota USA Foundation

Background

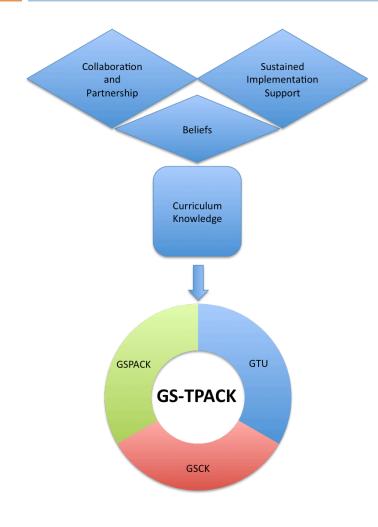

- Science and Environmental Education (EE) is complex and interdisciplinary
- Few educators have had pre-service experiences that promote EE and Technology integrated learning methodologies
- Even fewer have had any formal experience in using or teaching with Geospatial Information Technologies (GIT)

GS-TPACK

Geospatial Science Technological Pedagogical Content Knowledge:

a way of thinking about how teachers integrate their knowledge of geospatial technology and teaching across science disciplines.

GS-TPACK Model Overview



• Blends interdisciplinary pedagogical approaches of environmental education with GIT integration

• Designed to enhance the pedagogical content knowledge of inservice science teachers

• Provides opportunity to build requisite spatial thinking skills needed to effectively teach complex environmental issues

GS-TPACK Model Components

- Geospatial Technology Use (GTU) -Teacher's knowledge about and proficiency with GIT tools such as Google Earth or GIS applications.
- Geospatial Science Content Knowledge (GSCK) – Teachers understanding to how GIT can be used in science education.
- Geospatial Science Pedagogical Content Knowledge (GSPACK) – Ability to adapt teaching strategies, pair GIT to content, and design and implement science curriculum materials that enhance and assess student learning.

GS-TPACK PD Design

- Aligned to the Environmental Literacy and Inquiry (ELI)
 Curriculum
- Emphasis on geospatial learning activities
 - Spatial thinking skills
 - Analysis and synthesis of spatial patterns data
 - Instructional scaffolding for learning GIT tools within curriculum contexts.
- Investigations with inquiry-based laboratories
- Embedded educative curriculum materials

Participants and PD Implementation

- 8th grade teachers from 2 urban school districts teaching a wide range of ability levels
- □ First time using GIS in curriculum for all but one teacher
- □ Energy: 12-hours of face-to-face PD sessions (n=5)
 - 3 4hr sessions in summer
 OR
 - 2 6hr sessions in Fall
- □ Land Use Change: 6-hours of face-to-face PD sessions (n=14)
 - 1- full day in April

Assessment Tools and Data Sources

GS-TPACK Instrument

- Administered before first session and at end of day-long session
- [] (Energy: n=5; LUC: n=14)
- Periodic Feedback Survey (PFS)
 - Teachers completed multiple times during *Energy* implementation.
 (23 responses from 5 teachers)
- Summative Response and Reflection Survey (SRRS)
 - Administered at end of Energy curriculum implementation

□ (n=5)

GS-TPACK Results

 Significant increases in GS-TPACK total scores after PD sessions

Pre-Post Administration: t(18)=4.527. p<.001</p>

- \square Reliability (n=19):
 - **Pre-GS-TPACK** Total Cronbach's $\alpha = 0.956$
 - **D** Post-GS-TPACK Total Cronbach's $\alpha = 0.904$

Geospatial Technology Use

Subscale results (n=19)

- □ Significant increase: GTU t(18) = 6.68, p<.001
- □ Scale Reliability:
 - \Box Pre GTU Cronbach's $\alpha = 0.893$
 - □ Post GTU Cronbach's $\alpha = 0.883$

\square SRRS results after *Energy* implementation (n=5):

Item	Strongly Disagree % (n)	Disagree % (n)	No Opinion % (n)	Agree % (n)	Strongly Agree % (n)	Mean
My knowledge of geospatial technologies increased as a result of my participation in the ELI professional development sessions.	0.0% (0)	0.0% (0)	0% (0)	40.0% (2)	60.0% (3)	4.60
My geospatial technology skills increased as a result of my participation in the ELI professional development sessions.	0.0% (0)	0.0% (0)	0% (0)	20.0% (1)	80.0% (3)	4.80

Geopsatial Science Content Knowledge (GSCK)

□ GSCK Subscale results (n=19)

- □ Significant increase: GSCK t(18) = 5.68, p<.001
- □ Scale Reliability:

 \Box Pre-GTU Cronbach's $\alpha = 0.873$

□ Post -GTU Cronbach's $\alpha = 0.775$

Item	Strongly Disagree % (n)	Disagree % (n)	No Opinion % (n)	Agree % (n)	Strongly Agree % (n)	Mean
PFS : The curriculum and support materials provides me with appropriate content knowledge .	0.0% (0)	0.0% (0)	4.3% (1)	65.2% (15)	30.4% (7)	4.26
SRRS: My content knowledge about the topics presented in the ELI unit I just completed increased as a result of my participation in the professional development sesions.	0.0% (0)	0.0% (0)	0.0% (0)	40.0% (2)	60.0% (3)	4.60

Geospatial Science Pedagogical Content Knowledge (GSPACK)

□ Subscale results (n=19)

- □ Significant increase: GSPACK t(18) = 5.87, p<.001
- Scale Reliability:
 - Pre-GTU Cronbach's $\alpha = 0.893$
 - Dest -GTU Cronbach's $\alpha = 0.864$

	Strongly Disagree % (n)	Disagree % (n)	No Opinion % (n)	Agree % (n)	Strongly Agree % (n)	N/A	Mean
PFS: I was able to manage my classroom sufficiently when using geospatial technologies.	0.0% (0)	13.0% (3)	17.4% (4)	21.7% (5)	26.1% (6)	21.7% (5)	3.78
		Strongly Disagree % (n)	Disagree % (n)	No Opinion % (n)	Agree % (n)	Strongly Agree % (n)	Mean
PFS : The curriculum and support materials provided appropriate teaching ideas to help me use the instructional materials.		0.0% (0)	0.0% (0)	21.7% (5)	65.2% (15)	13.0% (3)	3.91

Geospatial Science Pedagogical Content Knowledge (GSPACK)

	Strongly Disagree % (n)	Disagree % (n)	No Opinion % (n)	Agree % (n)	Strongly Agree % (n)	Mean
PFS : The curriculum and support materials provided appropriate teaching ideas to help me use the instructional materials.	0.0% (0)	0.0% (0)	21.7% (5)	65.2% (15)	13.0% (3)	3.91

Item	Strongly Disagree % (n)	Disagree % (n)	No Opinion % (n)	Agree % (n)	Strongly Agree % (n)	Mean
SRRS : My understandings to why certain technologies were used in the curriculum to promote science learning increased as a result of my participation in the professional development sessions.	0.0% (0)	0.0% (0)	20.0% (1)	40.0% (2)	40.0% (2)	4.20
SRRS: My understandings of how and when to adapt my instruction while using geospatial learning tools (Google Earth or GIS) increased as a result of my participation in the professional development sessions.	0.0% (0)	0.0% (0)	40.0% (2)	0.0% (0)	60.0% (3)	4.20

Conclusion

- Data supports the effectiveness of the GS-TPACK PD model
- GS-TPACK instrument had good reliability for the entire instrument and for each subscale
- Teachers geospatial science technological pedagogical content knowledge improved significantly after PD sessions

For More Information

Paper available at: http://www.ei.lehigh.edu/eli/research/pubs.html

Tamara Peffer, Lehigh University, tep205@lehigh.edu

ELI Curriculum: http://www.ei.lehigh.edu/eli