

Research Questions

- To what extent does learning Earth science with Web GIS mapping and analysis tools improve urban middle-level learners' geospatial thinking and reasoning and understandings of tectonics concepts and processes?
- 2. What variations in curriculum enactment occur when middle-level teachers implement Web GIS learning activities?

Geospatial Learning Design Model

- 1. Elicit prior understandings of lesson concepts.
- 2. Present authentic task.
- Model task.
- 4. Provide worked example.
- 5. Ask learners to perform task.
- 6. Scaffold task.
- Ask learners additional questions to elaborate task.
- 8. Review activity concepts.

Key Features

- Curriculum enhancement activities with javascript Web GIS to be platform independent (i.e. tablets, laptops, cellphones)
- Interface design for middle school learners
- Inquiry-based, geospatial learning investigations
- Visualizations and tool features designed to enable geospatial thinking
- Content and pedagogical supports for teachers

Research Methods

- Tectonics content knowledge measure
- Geospatial thinking and reasoning measure as applied to tectonics concepts
- Curriculum enactment measures
- Classroom observations
- Post-implementation survey
- Focus groups

Promoting Spatial Thinking with Web-based Geospatial Technologies

Primary Investigators: Alec Bodzin, David Anastasio, and Dork Sahagian, Lehigh University

Investigation 1: Geohazards and Me: What geologic hazards exist near me? Which plate boundary is closest to me?

Analyzing relationships between locations, seismic hazards, plate boundaries, earthquakes, and volcanoes.

Investigation 3: How does thermal energy move around the Earth?

Investigating how surface hear flow (loss) is distributed around the Earth and its relationship to plate boundaries.

Investigation 4: What happens when plates diverge?

Investigating how tectonic strains are accommodated at the plate boundary.

Investigation 5: What happens when plates move sideways past each other? Investigating a continental transform boundary, the San Andreas Fault zone, and the seismic hazards associated with living in this area using earthquake data and historical photographs.

Investigation 6: What happens when plates collide?

Analyzing a subduction zone profile in the Aleutian Trench to understand geospatial relationships among slab depth, earthquake foci, and volcanoes at a convergent boundary.

Results

Email: amb4@lehigh.edu

1301c 1

Factonian Askinyamant for Protect and Partiest and Paired Symple T Taste (N = 102)

recionics Achievement for Freies	Pretest	Posttest		Effect Size
	Mean (SD)	Mean (SD)	t	Liter Size
Entire Assessment	17.57 (5.67)	24.79 (6.03)	49.45***	1.23
GTR Subscale	9.61 (3.73)	13.71 (3.84)	39.50***	1.08
Tectonics Content Subscale	7.96 (2.57)	11.09 (2.65)	40.12***	1.20

Notes. *** p < .001, 2-tailed. Effect size was calculated as Cohen's d by dividing the

difference between posttest and pretest mean scores by the pooled SD

- Mixed ANOVA for the GTR subscale from pretest to posttest between academic tracks found:
- (1) a significant gain over time (ignoring or regardless of tracks), p < .001, $\eta^2_{partial} = .56$, with the posttest means higher than the pretest means for all levels of academic track (2) a significant difference between tracks (ignoring or regardless of test time), p < .001, $\eta^2_{partial} = .34$; the upper level academic track had the highest mean, followed by the middle-level track, and last with the low-level track

Curriculum Enactment

- Teachers enacted all eight key elements of the Web GIS investigations for more than half (60.6%) of the thirty-three observed investigations
- Last key element, review activity concepts, was omitted for eight observed investigations due to time constraint issues
- Pedagogical implementation was mostly consistent for each teacher for each ability track level they taught
- There was little variability among the teachers with regards to adherence to the key elements of the Web GIS investigations during the curriculum enactment.
- For the majority of observed lessons, instruction was highly structured with much explicit modeling using a projected image.

Acknowledgements:

Development Team: Denise Bressler, Scott Rutzmoser, Jill Burrows, Allison Teletzke, Lori Cirucci

Data Management: Joan Fu, Farah Vallera Program Evaluator - Jean Russo Pilot and field testing middle school teachers