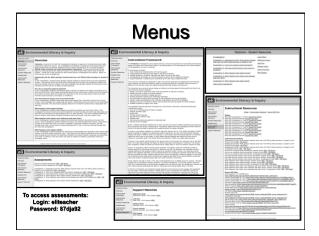
Integrating Web GIS in Earth Science Curriculum to Investigate Tectonics

Alec Bodzin, Lori Cirucci, David Anastasio, Dork Sahagian, Denise Bressler, Jill Burrows, and Scott Rutzmoser

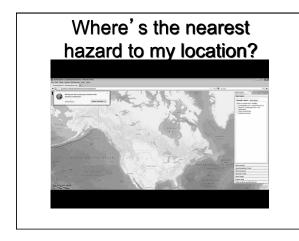
Environmental Literacy and Inquiry http://www.ei.lehigh.edu/eli

Project Features

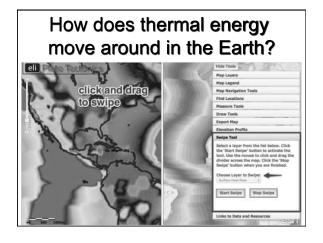
- Tectonics investigations for curriculum enhancement
- Javascript Web GIS to be platform independent (i.e. tablets, laptops, cellphones)
- · Interface design and customized data display
- Visualizations and tool features designed to enable spatial thinking
- Content and pedagogical supports for teachers to implement geospatial learning investigations


NGSS Disciplinary Core Ideas (Achieve, Inc.,	K-12 Framework Core Ideas (NRC, 2011)
2013)	
MS-ESS2 Earth's Systems; MS-ESS3 Earth and	
Human Activity	
	ESS1.C: The History of Planet Earth
how geoscience processes have changed	ESS2.A: Earth's Materials and Systems
Earth's surface at varying time and spatial	ESS2.B: Plate Tectonics and Large-Scale
scales.	System Interactions
Analyze and interpret data on the distribution of	ESS3.A: Natural Resources
	ESS3.B: Natural Hazards
seafloor structures to provide evidence of the	ESS3.C: Human Impacts on Earth Systems
	ESS3.D: Global Climate Change
Analyze and interpret data on natural hazards	
to forecast future catastrophic events and inform	
the development of technologies to mitigate their	
effects.	
Construct a scientific explanation based on	
evidence for how the uneven distributions of	
Earth's mineral, energy, and groundwater	
resources are the result of past and current	
geoscience processes.	
Apply scientific principles to design a method for	
monitoring and minimizing a human impact on	
the environment.	
Ask questions to clarify evidence of the factors	
that have caused the rise in global temperatures	
over the past century.	

Research-based Curriculum

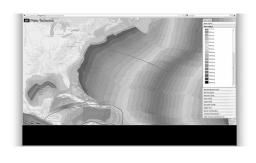

- Pilot testing and field testing in an urban school district (2 schools, 4 teachers, 12 classrooms)
- Tectonics content knowledge measures
- Spatial thinking and reasoning measures
- Teacher implementation practice to assess fidelity of implementation and curriculum enactment adherence to geospatial learning design model
- Classroom observations
- Post-implementation survey to assess pedagogical effectiveness of the educative curriculum materials

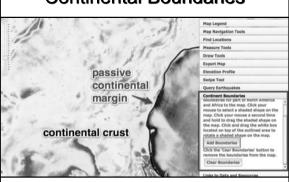
Investigations Investigation 1. Geohazards and Met. What geologic hazards series near met Ymitch plate boundary is closest to me? Investigation 2.1 More does recognize plate boundaries? Investigation 3.1 How does thermal energy move around in the Earth? Investigation 5. What happens when plates diverge? Investigation 5. What happens when plates move tideways past, each other? Investigation 5. What happens when plates collide? Open-ended Investigations

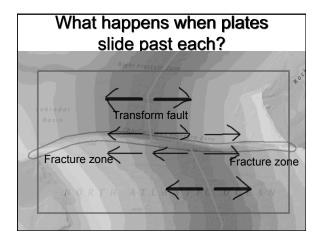


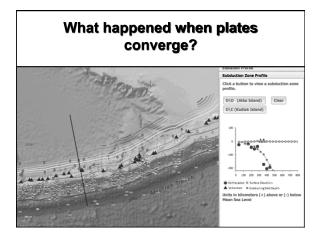
Where's the nearest hazard to my location?

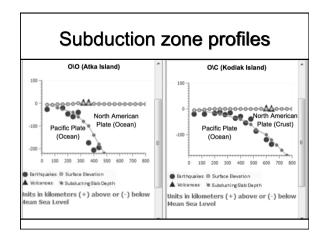
How do we recognize plate boundaries? | Hide Tools | Hide Tools | Map Layers | Map


How does thermal energy move around in the Earth?

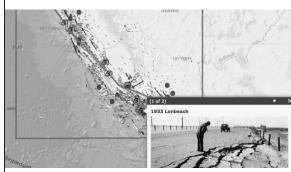

What happens when plates diverge?




Half Spreading Rate



Continental Boundaries



Investigating the San Andreas Fault Zone

What happens when plates collide?

Results

- Significant student learning gains Tectonics content and geospatial thinking and reasoning skills
- High student engagement
- Ease of use for urban middle school teachers and students
- Well developed teacher support materials
- High fidelity of implementation in classrooms

Questions or Comments?	
http://www.ei.lehigh.edu/eli/tectonics To access assessments: Login: eliteacher Password: 87dja92	